Dissociation Constant of N -Methyldiethanolamine in Aqueous Solution at Temperatures from 278 K to 368 K

Álvaro Pérez-Salado Kamps and Gerd Maurer*
Lehrstuhl für Technische Thermodynamik, Universität Kaiserslautern, D-67653 Kaiserslautern, Germany

Abstract

The chemical equilibrium constant for the dissociation of protonated N -methyldiethanolamine (MDEA, $\mathrm{CH}_{3} \mathrm{~N}^{\left.\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)_{2}\right) \text { in aqueous solutions is determined from electromotive force measurements at temper- }}$ atures from 278 K to 368 K . Experimental results are reported and compared to literature values. Experimental results (on molality scale) are correlated by $\ln \mathrm{K}=[-819.7 /(\mathrm{T} / \mathrm{K})]-79.474+10.9756$ $\ln (T / K)$.

Introduction

Aqueous alkanolamine solutions are widely used for the absorption of sour gases like carbon dioxide or hydrogen sulfide from gaseous effluents, e.g. natural gases, refinery gases, and synthesis gases. Especially N-methyl-2,2'iminodiethanol, commercially often called N -methyldiethanolamine (MDEA), is used for the selective removal of hydrogen sulfide from gases containing carbon dioxide. Due to the slower reaction of MDEA with carbon dioxide compared to hydrogen sulfide, in a properly designed absorption column a carbon dioxide rich gas is driven off on the top whereas a hydrogen sulfide rich solution is obtained on the bottom. As the reaction between hydrogen sulfide and MDEA is reversible, the solution rich in hydrogen sulfide is regenerated in a subsequent step, thereby producing hydrogen sulfide as a top product.

Continuing earlier work on the simultaneous solubility of carbon dioxide and hydrogen sulfide in aqueous MDEA solutions (Kuranov et al., 1996), and in order to improve the modeling of vapor-liquid equilibrium of these systems, the chemical equilibrium constant for the dissociation of MDEAH ${ }^{+}$(i.e. protonated MDEA) was measured in the temperature range from 278 K to 368 K . Experimental results are reported and compared to literature values.

Procedure

The equilibrium constant for the dissociation of MDEAH ${ }^{+}$ in aqueous solution:

$$
\operatorname{MDEAH}^{+}(\mathrm{aq}) \rightleftharpoons \operatorname{MDEA}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

was determined from electromotive force (EMF) measure ments. EMF measurements were performed in an electrochemical cell consisting of a separate glass pH electrode and a ($\mathrm{Ag}, \mathrm{AgCl}$) electrode in a chloride-containing aqueous electrolyte solution:
glass pH electrode|aqueous electrol yte solution
(cont. Cl^{-}ions) $\mid \mathrm{AgCl}(\mathrm{s}), \mathrm{Ag}(\mathrm{s})$
The solution must contain chloride, since it is a reaction partner in the half-reaction at the ($\mathrm{Ag}, \mathrm{AgCl}$) electrode. Glass pH electrodes have two well-known unpleasant properties (see for example Eisenman (1967) or Pitzer (1991)): (1) Failure to obey the Nernst equation perfectly. This error arises from the fact that the asymmetry poten-

[^0]

Figure 1. Scheme of the experimental arrangement: (A) glass pH electrode, (B) (Ag, AgCl) electrode, (C) platinum electrode, (D) electrometer, (E) thermostat, (F) measurement of temperature by platinum resistance thermometer.
tial of a glass pH electrode can vary with the pH of the solution under investigation. Nevertheless, the assumption is normally made that in passing from a standardizing solution to a test solution, the asymmetry potential remains constant. This is probably true in intermediate pH ranges but not for transitions between low- and high-pH solutions. The order of magnitude of this error is about 1 mV . (2) A tendency to drift in potential by millivolts over periods of minutes to days, depending on the electrode and electrolyte solution. Thus, the standard potential of a glass pH electrode might depend on time. This error arises from the fact that the asymmetry potential of a glass pH electrode can vary with time. However, a glass electrode cell can be used to measure the change in activity between two solutions of different composition. Therefore, a twocell system was used (cf. Figure 1). In such a system, two solutions are being compared. The same electrodes are used in both cells (Serjeant and Warner, 1978). They are transferred back and forth between the two cells while the equilibrium potential is recorded continuously. The time period between two measurements should be as short as possible. With a proper electrometer, adequate shielding and temperature matching of cells, accurate measurements can be achieved. The glass electrode method is experimentally simpler than the hydrogen electrode method, because elaborate precautions for eliminating oxygen are not necessary. It can provide accurate chemical reaction constants and activity coefficient data more rapidly and can also be used under conditions (e.g. in reductive solutions) where the hydrogen electrode fails.

The glass electrode method has been applied in the present work for determining the equilibrium constant for the dissociation of MDEAH ${ }^{+}$.

In cell I aqueous hydrogen chloride is used as the electrolyte solution:

Table 1. Experimental Equilibrium Data

t/ ${ }^{\circ} \mathrm{C}$	cell I		cell II			$\mathrm{E}_{11}-\mathrm{E}_{1} / \mathrm{mV}$	$10^{9} \mathrm{~K}_{\text {exp }}$
	$\tilde{\mathrm{m}}_{\mathrm{HCl}, 1 /}(\mathrm{mol} / \mathrm{kg})$	$\mathrm{E}_{1} / \mathrm{mV}$	$\tilde{\mathrm{m}}_{\mathrm{HCl}, \mathrm{II}} /(\mathrm{mol} / \mathrm{kg})$	$\tilde{\mathrm{m}}_{\text {MDEA }} /(\mathrm{mol} / \mathrm{kg})$	$\mathrm{E}_{11} / \mathrm{mV}$		
5.15	0.010149	-148.4	0.010155	0.02525	246.8	395.2	1.069
5.15	0.010150	-148.9	0.010162	0.05012	269.6	418.5	1.070
5.1	0.010173	-148.4	0.010188	0.07496	281.3	429.7	1.083
5.25	0.010156	-148.9	0.010074	0.09948	287.0	435.9	1.185*
5.3	0.009851	-145.7	0.009819	0.09982	289.0	434.7	1.248*
5.25	0.009870	-146.5	0.009874	0.10064	289.4	435.9	1.185*
5.2	0.010163	-147.5	0.010241	0.12579	296.1	443.6	1.074
5.15	0.010157	-147.7	0.010154	0.15038	300.1	447.8	1.106
5.15	0.010151	-146.9	0.010151	0.17505	304.2	451.1	1.132
5.3	0.010155	-144.4	0.010157	0.20016	307.5	451.9	1.278*
5.15	0.010165	-148.2	0.010159	0.25031	311.7	459.9	1.142
5.3	0.010156	-146.6	0.010152	0.30020	316.4	463.0	1.224*
5.2	0.010181	-148.0	0.010153	0.35032	319.8	467.8	1.171
5.0	0.009869	-145.5	0.009877	0.40033	325.2	470.7	1.165
5.15	0.010157	-148.4	0.010162	0.45007	325.6	474.0	1.156
5.0	0.010158	-147.5	0.010155	0.50029	327.5	475.0	1.227
5.1	0.010158	-148.4	0.010166	0.60000	331.8	480.2	1.193
5.15	0.010164	-146.5	0.010152	0.69999	336.4	482.9	1.251
5.15	0.010151	-147.5	0.010156	0.80007	339.0	486.5	1.226
5.1	0.010150	-146.8	0.010156	0.90026	342.3	489.1	1.232
5.1	0.010170	-147.4	0.010072	0.99164	344.2	491.6	1.250
15.1	0.010149	-152.4	0.010155	0.02525	244.4	396.8	1.770
15.15	0.010150	-152.8	0.010162	0.05012	267.9	420.7	1.793
15.1	0.010173	-152.4	0.010188	0.07496	280.4	432.8	1.779
15.2	0.010156	-152.6	0.010074	0.09948	286.6	439.2	1.942*
15.2	0.009851	-147.5	0.009819	0.09982	291.0	438.5	1.990*
15.25	0.009870	-151.3	0.009874	0.10064	289.0	440.3	1.858*
15.15	0.010163	-151.5	0.010241	0.12579	295.1	446.6	1.798
15.05	0.010157	-152.1	0.010154	0.15038	298.9	451.0	1.848
15.1	0.010151	-151.0	0.010151	0.17505	303.6	454.6	1.884
15.25	0.010155	-148.9	0.010157	0.20016	307.1	456.0	2.067*
15.05	0.010165	-152.1	0.010159	0.25031	311.7	463.8	1.884
15.25	0.010156	-150.8	0.010152	0.30020	316.4	467.2	2.007*
15.1	0.010181	-152.1	0.010153	0.35032	319.9	472.0	1.926
14.95	0.009869	-149.3	0.009877	0.40033	325.0	474.3	1.984
15.15	0.010157	-152.0	0.010162	0.45007	325.4	477.4	1.994
15.1	0.010158	-150.8	0.010155	0.50029	327.4	478.2	2.147
15.1	0.010158	-152.7	0.010166	0.60000	332.4	485.1	1.949
15.15	0.010164	-150.1	0.010152	0.69999	336.4	486.5	2.165
15.1	0.010151	-151.1	0.010156	0.80007	339.4	490.5	2.093
15.05	0.010150	-150.6	0.010156	0.90026	342.2	492.8	2.138
15.1	0.010170	-150.9	0.010072	0.99164	344.6	495.5	2.158
25.05	0.010149	-156.8	0.010155	0.02525	241.6	398.4	2.840
25.15	0.010150	-157.4	0.010162	0.05012	266.0	423.4	2.834
25.1	0.010173	-157.3	0.010188	0.07496	278.6	435.9	2.819
26.15	0.010156	-157.4	0.010074	0.09948	285.7	443.1	3.189*
25.2	0.009851	-152.9	0.009819	0.09982	289.1	442.0	3.136*
26.15	0.009870	-155.1	0.009874	0.10064	288.4	443.5	3.134*
25.05	0.010163	-156.5	0.010241	0.12579	293.7	450.2	2.838
25.1	0.010157	-156.3	0.010154	0.15038	298.9	455.2	2.887
25.05	0.010151	-156.3	0.010151	0.17505	302.6	458.9	2.933
26.25	0.010155	-154.1	0.010157	0.20016	306.9	461.0	3.334*
25.05	0.010165	-157.2	0.010159	0.25031	311.1	468.3	2.959
26.2	0.010156	-155.7	0.010152	0.30020	316.4	472.1	3.305*
25.15	0.010181	-157.3	0.010153	0.35032	319.1	476.4	3.066
25.05	0.010157	-157.3	0.010162	0.45007	325.1	482.4	3.100
25.1	0.010158	-156.8	0.010155	0.50029	327.5	484.4	3.221
25.1	0.010158	-157.0	0.010166	0.60000	332.1	489.1	3.193
25.1	0.010164	-155.4	0.010152	0.69999	336.2	491.6	3.402
25.05	0.010151	-156.5	0.010156	0.80007	338.7	495.2	3.342
25.05	0.010150	-155.6	0.010156	0.90026	341.9	497.5	3.437
25.05	0.010170	-155.6	0.010072	0.99164	344.0	499.6	3.559
35.0	0.010149	-161.2	0.010155	0.02525	238.3	399.5	4.487
35.05	0.010150	-162.0	0.010162	0.05012	263.1	425.1	4.521
35.0	0.010173	-161.6	0.010188	0.07496	276.4	438.0	4.496
36.15	0.010156	-161.3	0.010074	0.09948	284.5	445.8	5.005*
35.15	0.009851	-156.3	0.009819	0.09982	288.5	444.8	4.908*
35.15	0.009870	-160.4	0.009874	0.10064	285.6	446.0	4.697*
35.0	0.010163	-161.0	0.010241	0.12579	291.9	452.9	4.505
35.0	0.010157	-161.6	0.010154	0.15038	296.3	457.9	4.598
35.05	0.010151	-160.9	0.010151	0.17505	300.9	461.8	4.670
35.15	0.010155	-158.6	0.010157	0.20016	305.2	463.8	5.018*
34.95	0.010165	-161.6	0.010159	0.25031	309.6	471.2	4.741
35.2	0.010156	-160.2	0.010152	0.30020	314.9	475.1	5.004*
35.0	0.010181	-162.1	0.010153	0.35032	317.8	479.9	4.853
35.0	0.009869	-158.7	0.009877	0.40033	323.2	481.9	5.122

Table 1 (continued)

t/ ${ }^{\circ} \mathrm{C}$	cell I		cell II			$E_{11}-E_{1} / \mathrm{mV}$	$10^{9} \mathrm{~K}_{\text {exp }}$
	$\overline{\tilde{\mathrm{m}}_{\mathrm{HCl}, \mathrm{I}} /(\mathrm{mol} / \mathrm{kg})}$	$\mathrm{E}_{1} / \mathrm{mV}$	$\overline{\tilde{\mathrm{m}}_{\mathrm{HCl}, \mathrm{II}} /(\mathrm{mol} / \mathrm{kg})}$	$\tilde{\mathrm{m}}_{\text {MDEA }} /(\mathrm{mol} / \mathrm{kg})$	$\mathrm{E}_{11} / \mathrm{mV}$		
35.0	0.010157	-162.4	0.010162	0.45007	324.1	486.5	4.840
35.0	0.010158	-161.3	0.010155	0.50029	326.1	487.4	5.224
34.95	0.010158	-161.5	0.010166	0.60000	330.7	492.2	5.202
35.0	0.010164	-160.9	0.010152	0.69999	335.4	496.3	5.230
34.95	0.010151	-160.6	0.010156	0.80007	338.0	498.6	5.438
35.0	0.010150	-160.4	0.010156	0.90026	340.6	501.0	5.595
34.95	0.010170	-161.0	0.010072	0.99164	342.9	503.9	5.604
44.9	0.010149	-166.8	0.010155	0.02525	233.8	400.6	6.884
44.9	0.010150	-167.6	0.010162	0.05012	259.7	427.3	6.849
44.95	0.010173	-167.2	0.010188	0.07496	273.2	440.4	6.898
45.25	0.010156	-167.4	0.010074	0.09948	280.8	448.2	7.384*
45.15	0.009851	-162.6	0.009819	0.09982	285.3	447.9	7.418*
46.2	0.009870	-166.0	0.009874	0.10064	282.2	448.2	7.743*
44.95	0.010163	-166.8	0.010241	0.12579	289.0	455.8	6.911
44.95	0.010157	-167.4	0.010154	0.15038	293.8	461.2	6.977
44.95	0.010151	-166.8	0.010151	0.17505	298.2	465.0	7.134
46.2	0.010155	-164.8	0.010157	0.20016	302.7	467.5	8.005*
44.95	0.010165	-167.4	0.010159	0.25031	307.1	474.5	7.318
46.2	0.010156	-166.1	0.010152	0.30020	312.3	478.4	8.202*
44.95	0.010181	-167.5	0.010153	0.35032	316.1	483.6	7.433
44.95	0.010157	-167.4	0.010162	0.45007	322.2	489.6	7.641
45.0	0.010158	-167.3	0.010155	0.50029	324.2	491.5	7.951
44.9	0.010158	-167.4	0.010166	0.60000	328.9	496.3	7.942
44.9	0.010164	-166.5	0.010152	0.69999	333.0	499.5	8.267
44.9	0.010151	-166.4	0.010156	0.80007	336.1	502.5	8.421
44.85	0.010150	-166.0	0.010156	0.90026	338.6	504.6	8.752
45.0	0.010170	-165.1	0.010072	0.99164	341.5	506.6	9.207
54.95	0.010149	-171.7	0.010155	0.02525	229.1	400.8	10.691
55.05	0.010150	-172.3	0.010162	0.05012	256.7	429.0	10.439
54.95	0.010173	-172.2	0.010188	0.07496	269.8	442.0	10.630
56.15	0.010156	-174.3	0.010074	0.09948	275.7	450.0	11.906*
55.15	0.009851	-168.0	0.009819	0.09982	282.5	450.5	11.096*
55.1	0.009870	-173.0	0.009874	0.10064	278.3	451.3	10.773
54.9	0.010163	-171.6	0.010241	0.12579	286.1	457.7	10.692
55.0	0.010157	-172.2	0.010154	0.15038	291.2	463.4	10.798
55.0	0.010151	-171.8	0.010151	0.17505	295.7	467.5	10.957
54.95	0.010165	-172.3	0.010159	0.25031	305.0	477.3	11.211
55.15	0.010156	-171.9	0.010152	0.30020	308.4	480.3	12.274*
54.9	0.010181	-172.4	0.010153	0.35032	313.9	486.3	11.489
55.0	0.010157	-172.5	0.010162	0.45007	319.9	492.4	11.916
54.95	0.010158	-172.1	0.010155	0.50029	322.0	494.1	12.467
55.0	0.010158	-171.8	0.010166	0.60000	326.7	498.5	12.780
54.95	0.010164	-171.4	0.010152	0.69999	331.2	502.6	12.882
55.05	0.010151	-171.0	0.010156	0.80007	334.1	505.1	13.496
55.0	0.010150	-171.0	0.010156	0.90026	336.8	507.8	13.716
54.9	0.010170	-171.2	0.010072	0.99164	339.1	510.3	13.984
64.9	0.010149	-178.0	0.010155	0.02525	223.9	401.9	15.614
64.95	0.010150	-176.9	0.010162	0.05012	252.3	429.2	16.162
64.95	0.010173	-178.6	0.010188	0.07496	265.3	443.9	15.776
65.15	0.010156	-177.8	0.010074	0.09948	273.4	451.2	17.382*
66.2	0.009870	-179.6	0.009874	0.10064	272.7	452.3	17.524*
64.9	0.010163	-178.1	0.010241	0.12579	281.8	459.9	15.977
64.95	0.010157	-178.2	0.010154	0.15038	286.9	465.1	16.478
64.95	0.010151	-178.1	0.010151	0.17505	291.7	469.8	16.428
66.25	0.010155	-175.7	0.010157	0.20016	294.8	470.5	19.637*
65.0	0.010165	-179.2	0.010159	0.25031	301.2	480.4	16.589
66.3	0.010156	-177.0	0.010152	0.30020	303.3	480.3	21.414*
64.95	0.010181	-178.6	0.010153	0.35032	310.1	488.7	17.611
64.95	0.010157	-178.7	0.010162	0.45007	316.6	495.3	17.930
64.85	0.010158	-179.1	0.010155	0.50029	318.6	497.7	18.293
65.0	0.010164	-178.0	0.010152	0.69999	328.0	506.0	19.351
64.95	0.010151	-177.5	0.010156	0.80007	330.8	508.3	20.259
65.0	0.010150	-177.1	0.010156	0.90026	333.4	510.5	21.138
75.05	0.010149	-181.7	0.010155	0.02525	219.1	400.8	24.183
75.1	0.010150	-183.1	0.010162	0.05012	248.9	432.0	22.586
74.95	0.010173	-183.9	0.010188	0.07496	261.4	445.3	23.335
76.25	0.010156	-184.6	0.010074	0.09948	268.8	453.4	26.415*
75.2	0.009851	-177.6	0.009819	0.09982	276.2	453.8	24.838*
75.0	0.010163	-183.3	0.010241	0.12579	278.1	461.4	24.019
74.95	0.010157	-183.9	0.010154	0.15038	283.8	467.7	23.861
74.95	0.010151	-183.5	0.010151	0.17505	288.1	471.6	24.560
75.1	0.010155	-183.3	0.010157	0.20016	292.0	475.3	25.125
75.0	0.010165	-184.2	0.010159	0.25031	297.8	482.0	25.230
75.2	0.010156	-185.3	0.010152	0.30020	303.0	488.3	24.798*
75.0	0.010181	-183.8	0.010153	0.35032	307.3	491.1	26.338
75.0	0.009869	-182.6	0.009877	0.40033	310.3	492.9	28.131

Table 1 (continued)

t/ ${ }^{\circ} \mathrm{C}$	cell I		cell II			$\mathrm{E}_{11}-\mathrm{E}_{1} / \mathrm{mV}$	$10^{9} \mathrm{~K}_{\text {exp }}$
	$\left.\tilde{\mathrm{m}}_{\mathrm{HCl}, 1 /} / \mathrm{mol} / \mathrm{kg}\right)$	$\mathrm{E}_{1} / \mathrm{mV}$	$\tilde{\mathrm{m}}_{\mathrm{HCl}, 11} /(\mathrm{mol} / \mathrm{kg})$	$\tilde{\mathrm{m}}_{\text {MDEA }} /(\mathrm{mol} / \mathrm{kg})$	$\mathrm{E}_{11} / \mathrm{mV}$		
75.0	0.010157	-181.8	0.010162	0.45007	313.2	495.0	29.587
74.95	0.010158	-182.3	0.010155	0.50029	316.1	498.4	29.287
75.05	0.010158	-182.6	0.010166	0.60000	321.0	503.6	29.589
74.95	0.010164	-183.4	0.010152	0.69999	324.7	508.1	29.541
74.95	0.010151	-183.4	0.010156	0.80007	327.2	510.6	30.868
75.05	0.010150	-182.4	0.010156	0.90026	330.3	512.7	32.491
75.0	0.010170	-183.0	0.010072	0.99164	332.1	515.1	33.517
85.0	0.010149	-189.9	0.010155	0.02525	213.4	403.3	32.319
85.0	0.010150	-188.9	0.010162	0.05012	242.5	431.4	34.302
85.1	0.010173	-190.2	0.010188	0.07496	257.2	447.4	33.130
85.1	0.010156	-192.8	0.010074	0.09948	263.6	456.4	34.751
85.05	0.009851	-187.9	0.009819	0.09982	267.7	455.6	35.461
86.2	0.009870	-192.0	0.009874	0.10064	265.3	457.3	35.229*
85.15	0.010163	-190.0	0.010241	0.12579	272.4	462.4	35.916
85.05	0.010157	-188.3	0.010154	0.15038	279.7	468.0	36.659
85.2	0.010151	-190.5	0.010151	0.17505	282.7	473.2	36.540
86.25	0.010155	-190.4	0.010157	0.20016	286.3	476.7	39.277*
85.05	0.010165	-191.4	0.010159	0.25031	292.6	484.0	37.076
86.35	0.010156	-190.8	0.010152	0.30020	297.3	488.1	41.421*
85.25	0.010181	-191.2	0.010153	0.35032	301.2	492.4	40.308*
85.15	0.010157	-189.7	0.010162	0.45007	309.3	499.0	41.394
85.0	0.010158	-190.4	0.010155	0.50029	311.1	501.5	42.110
85.0	0.010158	-188.8	0.010166	0.60000	316.7	505.5	44.207
85.1	0.010164	-188.6	0.010152	0.69999	319.9	508.5	47.161
85.15	0.010151	-187.8	0.010156	0.80007	321.2	509.0	53.058
85.2	0.010150	-188.2	0.010156	0.90026	323.5	511.7	54.668
85.1	0.010170	-188.7	0.010072	0.99164	325.8	514.5	55.672
95.0	0.010149	-194.4	0.010155	0.02525	207.3	401.7	48.545
95.0	0.010173	-196.8	0.010188	0.07496	250.7	447.5	48.851
94.6	0.009870	-197.2	0.009874	0.10064	259.8	457.0	49.886*
94.9	0.010163	-196.5	0.010241	0.12579	267.3	463.8	51.065
94.9	0.010157	-192.8	0.010154	0.15038	276.4	469.2	52.931
94.95	0.010151	-196.6	0.010151	0.17505	277.9	474.5	52.671
95.1	0.010155	-196.3	0.010157	0.20016	281.3	477.6	55.172
94.95	0.010165	-196.8	0.010159	0.25031	288.1	484.9	54.959
94.5	0.010156	-196.1	0.010152	0.30020	292.4	488.5	57.951*
94.85	0.010181	-196.6	0.010153	0.35032	296.4	493.0	59.922
94.8	0.009869	-195.5	0.009877	0.40033	300.8	496.3	61.081
94.95	0.010157	-194.7	0.010162	0.45007	302.4	497.1	67.767
94.95	0.010158	-196.0	0.010155	0.50029	305.5	501.5	65.448
94.95	0.010164	-196.7	0.010152	0.69999	313.0	509.7	70.659
95.0	0.010151	-196.4	0.010156	0.80007	314.7	511.1	77.093
94.9	0.010150	-196.2	0.010156	0.90026	318.7	514.9	76.301
95.0	0.010170	-196.3	0.010072	0.99164	319.1	515.4	84.671
glass pH electrode\| $\mathrm{HCl}\left(\mathrm{aq}, \tilde{\mathrm{m}}_{\mathrm{HCl}, \mathrm{I}}\right) \mid \mathrm{AgCl}(\mathrm{s}), \mathrm{Ag}(\mathrm{s})$				HCl give			

cell I
As the activity of a pure solid is set to unity, for cell I the Nernst equation results in

$$
\begin{equation*}
\mathrm{E}_{1}=\mathrm{E}^{\circ}(\mathrm{T})-\frac{\mathrm{RT}}{\mathrm{~F}} \ln \left(\mathrm{a}_{\mathrm{H}^{+}} \mathrm{a}_{\mathrm{Cl}^{-}}\right)_{1} \tag{1}
\end{equation*}
$$

E_{1} is the electromotive force of cell I, and E° is its standard potential. Since HCl is completely dissociated in diluted aqueous solution, the dissociation of water can be neglected. For a given temperature and overall molality of $\mathrm{HCl}\left(\tilde{m}_{\mathrm{HCl}, 1}\right)$ activities $\left(\mathrm{a}_{\mathrm{H}^{+}}\right)$, and ($\left.\mathrm{a}_{\mathrm{Cl}}-\right)_{\text {, }}$ were calculated using the excess Gibbs energy model of Pitzer (cf. appendices 1 and 2).

Cell II is filled with an aqueous solution of MDEA and HCl :
glass pH electrode|MDEA(aq, $\left.\tilde{m}_{\text {MDEA }}\right)$,

$$
\mathrm{HCl}\left(\mathrm{aq}, \tilde{\mathrm{~m}}_{\mathrm{HCl}, \mathrm{II}}\right) \mid \mathrm{AgCl}(\mathrm{~s}), \mathrm{Ag}(\mathrm{~s})
$$

cell II
The Nernst equation results in

$$
\begin{equation*}
\mathrm{E}_{I I}=\mathrm{E}^{\circ}(\mathrm{T})-\frac{\mathrm{RT}}{\mathrm{~F}} \ln \left(\mathrm{a}_{\mathrm{H}^{+}} \mathrm{a}_{\mathrm{CI}}\right)_{\| I} \tag{2}
\end{equation*}
$$

The mass balance equations for water, MDEA, and

$$
\begin{equation*}
\tilde{n}_{\mathrm{w}}=\mathrm{n}_{\mathrm{w}}+\mathrm{n}_{\mathrm{OH}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\mathrm{n}}_{\mathrm{MDEA}}=\mathrm{n}_{\mathrm{MDEA}}+\mathrm{n}_{\mathrm{MDEAH}+} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\mathrm{n}}_{\mathrm{HCl}}=\mathrm{n}_{\mathrm{Cl}} \tag{5}
\end{equation*}
$$

The condition of electroneutrality results in

$$
\begin{equation*}
0=\mathrm{n}_{\mathrm{H}^{+}}-\mathrm{n}_{\mathrm{OH}^{-}}+\mathrm{n}_{\mathrm{MDEAH}^{+}}-\mathrm{n}_{\mathrm{Cl}^{-}} \tag{6}
\end{equation*}
$$

In cell II the dissociation of water is taken into account:

$$
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The conditions for chemical equilibrium for both reactions present are

$$
\begin{equation*}
\mathrm{K}_{\mathrm{W}}(\mathrm{~T})=\exp \left\{-\frac{\mu_{\mathrm{H}^{+}, \mathrm{m}}^{\infty}+\mu_{\mathrm{OH}-, \mathrm{m}}^{\infty}-\mu_{\mathrm{W}, \mathrm{liq}}^{\text {pure }}}{\mathrm{RT}}\right\}=\frac{\mathrm{a}_{\mathrm{H}^{+}} \mathrm{a}_{\mathrm{OH}^{-}}}{\mathrm{a}_{\mathrm{W}}} \tag{7}
\end{equation*}
$$

$$
K(T)=\exp \left\{-\frac{\mu_{\mathrm{MDEA}, \mathrm{~m}}^{\infty}+\mu_{\mathrm{H}+, \mathrm{m}}^{\infty}-\mu_{\mathrm{MDEAH}+, \mathrm{m}}^{\infty}}{\mathrm{RT}}\right\}=
$$

The influence of pressure on the chemical reactions is neglected. The chemical equilibrium constant K_{w} for the dissociation of water was taken from the literature (Fisher et al., 1972). Activities were approximated using only the modified Debye-Hückel term in Pitzer's equation, i.e. neglecting binary and ternary parameters.

As both cells are at the same temperature, they have the same standard potential E°. Thus, subtracting eq 1 from eq 2 results in

$$
\begin{equation*}
\ln \left(\mathrm{a}_{\mathrm{H}+} \mathrm{a}_{\mathrm{Cl}}\right)_{\| I}=\frac{\mathrm{F}}{\mathrm{RT}}\left(\mathrm{E}_{\mathrm{I}}-\mathrm{E}_{I I}\right)+\ln \left(\mathrm{a}_{\mathrm{H}+} \mathrm{a}_{\mathrm{Cl}}\right)_{\mathrm{l}} \tag{9}
\end{equation*}
$$

For given temperatures and compositions in both cells (cell I, $\tilde{\mathrm{m}}_{\mathrm{HCI}, \mathrm{I}} ;$ cell II $, \tilde{\mathrm{m}}_{\text {MDEA }}, \tilde{\mathrm{m}}_{\text {HCI,II }}$), the electromotive forces $\mathrm{E}_{\text {I }}$ $\left(=\mathrm{E}_{\|}\left(\mathrm{T}, \tilde{m}_{H C l, I}\right)\right)$ and $\mathrm{E}_{\| I}\left(=\mathrm{E}_{I I}\left(\mathrm{~T}, \tilde{m}_{\text {MDEA }}, \tilde{m}_{H C l, I I}\right)\right.$ were measured. With this information, the set of equations (eqs $3-9$) can be solved in an iterative procedure to yield the "true" number of moles of each species present in cell II, as well as a preliminary number for the dissociation constant of MDEAH ${ }^{+}$: $\mathrm{K}_{\exp }\left(\mathrm{T}, \tilde{m}_{\text {MDEA }}, \tilde{m}_{H C l, I I}\right)$. This dissociation constant is called preliminary because it is calculated out of a set of equations in which for cell II activities are not exactly known but only approximated using the modified Debye-Hückel term in Pitzer's equation. For constant temperature T and constant overall molality of $\mathrm{HCl}\left(\tilde{m}_{\mathrm{HI}, ו 1}\right)$ measurements were performed at different overall molalities of MDEA ($\tilde{m}_{\text {MDEA }}$). The true equilibrium constant for the dissociation of MDEAH ${ }^{+}$is determined in a two-step extrapolation procedure:

$$
\begin{align*}
& \tilde{m}_{\text {HCI,II }}=\text { Const }\left\{K_{\exp }\left(\mathrm{T}, \tilde{m}_{\text {MDEA }}, \tilde{\mathrm{m}}_{\mathrm{HCI}, I I}\right)\right\}=\mathrm{K}_{\exp }\left(\mathrm{T}, \tilde{\mathrm{~m}}_{\mathrm{HCI}, I I}\right) \\
& \tilde{\mathrm{m}}_{\text {MDEA }} \rightarrow 0 \tag{10}
\end{align*}
$$

$$
\begin{equation*}
\lim _{\tilde{m}_{H C l, I I} \rightarrow 0} K_{\exp }\left(T, \tilde{m}_{H C l, I I}\right)=K(T) \tag{11}
\end{equation*}
$$

However, if $\tilde{\mathrm{m}}_{\mathrm{HCl}, \mathrm{II}}$ is small enough (e.g. $\tilde{\mathrm{m}}_{\mathrm{HCl}, \mathrm{II}} \approx 0.01 \mathrm{~mol} /$ kg), the second extrapolation is not necessary.

Experimental Section

For the EMF measurements a high-resolution electrometer (Metrohm, pH Voltmeter, type 713, resolution 0.1 mV) with a very large input resistance ($>10^{13} \Omega$) was used. A glass pH electrode (Metrohm, separate pH glass electrode with inner ($\mathrm{Ag}, \mathrm{AgCl}$) reference electrode, type 6.0133.100) was combined with a ($\mathrm{Ag}, \mathrm{AgCl}$) electrode of the thermal type (Sensortechnik Meinsberg, type SG, specially manufactured). The electrolyte solutions were saturated with AgCl to avoid the dissolution of AgCl from the ($\mathrm{Ag}, \mathrm{AgCl}$) electrode. A platinum electrode (Sensortechnik M einsberg, hydrogen electrode, type MC30), which was also immersed in the electrolyte solution, was used for electrostatic and electromagnetic shielding of the cell. When not in use, the electrodes were stored in distilled water, which was also saturated with AgCl . Electrodes have to be washed before they are transferred from one cell to the other. Washing was accomplished by carefully rinsing an electrode first with distilled water and then transferring it through five glass bottles, each containing the same solution as the cell into which the electrode was supposed to be immersed for the EMF measurement. The cells were completely filled

Figure 2. Influence of the overall molality of MDEA on the experimental results for $\operatorname{In} K_{\text {exp }}$.

Table 2. Extrapolated Experimental Results for the Dissociation Constant of MDEAH ${ }^{+}$

$\overline{\mathrm{t}} /{ }^{\circ} \mathrm{C}$	$10^{9} \mathrm{~K}$	$\pm \bar{\Delta} \mathrm{K} / \%$
5.12	1.080	1.65
15.09	1.787	2.03
25.08	2.798	1.03
35.00	4.454	1.18
44.94	6.740	0.89
54.98	10.40	0.97
64.94	15.52	0.88
75.00	23.13	2.39
85.09	32.82	2.13
94.95	48.41	2.13

with the electrolyte solution, hermetically sealed, and mounted in a thermostatically controlled bath. The temperature was measured by resistance thermometry (estimated uncertainty: $\pm 0.05 \mathrm{~K})$. A constant electrometer reading was attained about $15-30 \mathrm{~min}$ after the electrodes had been transferred into a cell.

Substances. MDEA (Merck Schuchardt, N-methyl-2,2'iminodiethanol for synthesis, purity 98.4 mass \% according to analyze certification (GC), water content less than 0.2 mass \%, other impurities unknown) and HCl (Merck, HCl Ultrapur) were used without further purification. Water was deionized and further purified by vacuum distillation. HCl stock solutions were gravimetrically analyzed with a relative uncertainty of $\pm 0.05 \%$.

Results

M easurements were performed from 278 K to 368 K at 10 K intervals. The overall molality of HCl in both cells was held constant in all solutions ($\tilde{\mathrm{m}}_{\mathrm{HCl,I}} \approx \tilde{\mathrm{~m}}_{\mathrm{HCI}, I I} \approx 0.01$ $\mathrm{mol} / \mathrm{kg}$). The overall molality of MDEA was between 0.025 $\mathrm{mol} / \mathrm{kg}$ and $1 \mathrm{~mol} / \mathrm{kg}$. The experimental results for the EMF-measurements $E_{I}\left(T, \tilde{m}_{H C I, I}\right)$ and $E_{I I}\left(T, \tilde{m}_{\text {MDEA }}, \tilde{m}_{H C I, I I}\right)$ are given in Table 1 together with the preliminary (i.e. not extrapolated) numbers for the dissociation constant of MDEAH ${ }^{+}\left(K_{\exp }\right)$. In Figure 2, In $K_{\exp }$ is plotted against the overall molality of MDEA. Extrapolations were done by linear regression. In Table 1 superscript * denotes results

Table 3. Comparison of Correlated Values with Literature Data

T/K	$10^{9} \mathrm{~K}$				
	this work	Schwabe et al. (1959)	$\begin{gathered} \text { Kim et al. } \\ \text { (1987) } \end{gathered}$	Oscarson et al. (1989)	$\begin{gathered} \hline \text { Littel et al. } \\ (1990) \end{gathered}$
293.0	2.21 ± 0.03				1.74 ± 0.08
298.15	2.81 ± 0.03	3.07	3.02 ± 0.24		
298.2	2.82 ± 0.03			2.76 ± 0.20	
299.9	3.05 ± 0.03			2.99 ± 0.21	
303.0	3.51 ± 0.04				3.25 ± 0.15
308.15	4.42 ± 0.05	4.89			
311.0	5.01 ± 0.06			5.00 ± 0.36	
318.0	6.78 ± 0.06				5.30 ± 0.25
318.15	6.82 ± 0.06	7.57			
333.0	12.62 ± 0.12				10.4 ± 0.5
333.15	12.70 ± 0.12	13.8			
333.2	12.73 ± 0.12			12.9 ± 0.9	
361.0	37.06 ± 0.79			38.0 ± 2.7	
388.0	$95.8{ }^{\text {a }}$			97.9 ± 7.0	
422.1	$286.4^{\text {a }}$			287.5 ± 20.6	

Table 4. Comparison of Reaction Standard State Properties with Literature Data

	this work	Schwabe et al. (1959)	$\begin{gathered} \text { Kim et al. } \\ (1987) \end{gathered}$	Oscarson et al. (1989)
$\Delta_{\mathrm{r}} \mathrm{G}_{\mathrm{m}}^{\circ} /(\mathrm{kJ} / \mathrm{mol})$	48.81 ± 0.03	48.59 ± 0.17	48.63 ± 0.17	48.86 ± 0.18
$\Delta_{r} \mathrm{H}^{\circ} /(\mathrm{kJ} / \mathrm{mol})$	34.0	35.7	35.2 ± 0.3	35.2 ± 1.0
$\Delta_{\mathrm{r}} \mathrm{S}_{\mathrm{m}} /(\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$)	-49.6	-43.2	-45.1 ± 1.6	-45.8 ± 4.0
$\Delta_{\mathrm{r}} \mathrm{C}_{\mathrm{P}, \mathrm{m}} / \mathrm{D} /(\mathrm{mol} \cdot \mathrm{K})$)	91.3			73.3
of experiments where temperature deviated by more than $\pm 0.15 \mathrm{~K}$ from the corresponding isotherm. Those results			$\mathrm{K}=$	

$\pm 0.15 \mathrm{~K}$ from the corresponding isotherm. Those results
were not considered in the extrapolation and are not shown in Figure 2. Average temperatures ($\overline{\mathrm{t}}$) and chemical equilibrium constants as resulting from the linear extrapoIation (K) are given in Table 2. Additionally, the relative deviation $(\pm \bar{\Delta} K)$ is given in Table 2. It represents the average deviation between the direct experimental data and the linear fit and thus provides insight into the quality of the extrapolation. $\bar{\Delta} K$ is predominantly below 2% and at maximum smaller than 2.4%. The final results for the chemical equilibrium constant (on molality scale) are correlated by

$$
\begin{equation*}
\ln K=\frac{-819.7}{(T / K)}-79.474+10.9756 \ln (T / K) \tag{12}
\end{equation*}
$$

with an average deviation of 0.9% (0.004) and a maximum deviation of $2 \%(0.009)$ in $K(p K)$. Those deviations have to be compared with the experimental uncertainty. The scattering of the results for $\mathrm{K}_{\text {exp }}$ is due to uncertainties in $E_{1}-E_{11}$ of about $\pm 0.5 \mathrm{mV}$. A systematic error can result from impurities in MDEA. In the evaluation of the extrapolated data no impurities were taken into account. However, when MDEA samples are treated as a mixture of 98.4 mass \% of MDEA and 1.6 mass \% of water, the numerical values for K are reduced by about 2%.

Comparison with Literature Data

Experimental results for the chemical equilibrium constant for the dissociation of MDEAH ${ }^{+}$have been reported by Schwabe et al. (1959) at temperatures between 298.15 K and 333.15 K, Kim et al. (1987) at 298.15 K, Oscarson et al. (1989) at temperatures between 298.2 K and 422.1 K, and Littel et al. (1990) at temperatures between 293 K and 333 K . The results of Schwabe et al., Oscarson et al., and Littel et al. are based on a different reference state (using molarity scale). They were converted to the reference state used in the present work by
where ρ_{W} is the mass density of pure water which was taken from Saul and Wagner (1987). In Table 3 correlated values from the present work, including experimental uncertainties, are compared with literature data. F or the results by Schwabe et al. experimental uncertainties were estimated to $\Delta \mathrm{pK} \approx \pm 0.03$. Kim et al. give $\Delta \mathrm{pK}= \pm 0.03$. Oscarson et al. give $\Delta \mathrm{pK}= \pm 0.03$ at 298.2 K . Littel et al. give $\Delta \mathrm{pK}= \pm 0.02$. Figure 3 shows chemical equilibrium constants from the present work in comparison with literature data. Values from the present work agree with the results of Schwabe et al. within about 10\%; however, there is a systematic deviation as the results by Schwabe et al. are always larger than those from the present work. The value reported by Kim et al. agrees very well with the value of Schwabe et al. The data reported by Littel et al. are always smaller than those from the present work. The differences scatter from about 7% up to 22%. The results of the present work are in excellent agreement with the results by Oscarson et al. Differences are within the experimental uncertainties given by Oscarson et al., also at temperatures above 368 K , where the results of the present work are extrapolated. Applying the well-known thermodynamic relations:

$$
\begin{gather*}
\Delta_{r} G_{m}=-R T \ln K \tag{14}\\
\Delta_{r} H_{m}=-R \frac{d \ln K}{d(1 / T)} \tag{15}\\
\Delta_{r} S_{m}=\left(\Delta_{r} H_{m}-\Delta_{r} G_{m}\right) / T \tag{16}\\
\Delta_{r} C_{P, m}=\frac{d \Delta_{r} H_{m}}{d T} \tag{17}
\end{gather*}
$$

the change of standard state properties $\left(T=T^{\circ}=298.15\right.$ K) for the dissociation of MDEAH ${ }^{+}$in water were calculated from eq 12 resulting in $\Delta_{r} G_{m}^{\circ}=48.81 \mathrm{~kJ} / \mathrm{mol}, \Delta_{r} \mathrm{H}_{\mathrm{m}}^{\circ}=34.0$ $\mathrm{kJ} / \mathrm{mol}, \Delta_{\mathrm{r}} \mathrm{S}_{\mathrm{m}}^{\circ}=-49.6 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}), \Delta_{\mathrm{r}} \mathrm{C}_{\mathrm{p}, \mathrm{m}}=$ const. $=91.3$

Figure 3. Dissociation constant of MDEAH ${ }^{+}$.
$\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$. These standard state properties are compared to literature data in Table 4. For that comparison the experimental results for the equilibrium constant of Schwabe et al. and of Oscarson et al. were approximated by

Schwabe et al.

$$
\begin{equation*}
\ln K=\frac{-4794.1}{(T / K)}+6.018-1.6744 \ln (T / K) \tag{18}
\end{equation*}
$$

Oscarson et al.

$$
\begin{equation*}
\ln K=\frac{-1609.2}{(T / K)}-64.506+8.8096 \ln (T / K) \tag{19}
\end{equation*}
$$

As can be seen from Table 4 numbers for $\Delta_{r} G_{m}^{\circ}$ and $\Delta_{r} H_{m}^{\circ}$ from all sources nearly agree within the sum of experimental uncertainties with the results of the present work. The number for $\Delta_{r} S_{\mathrm{m}}^{\circ}$ from the present work favorably agrees with the result from Oscarson et al., while, as was to be expected, the largest deviation is observed for $\Delta_{r} C_{P, m}$. However, considering the experimental uncertainies the agreement with the $\Delta_{\mathrm{r}} \mathrm{C}_{\mathrm{p}, \mathrm{m}}$ results from the work of Oscarson et al. still seems to be reasonable.

Conclusions

The chemical equilibrium constant for the dissociation of MDEAH ${ }^{+}$in aqueous solution was determined from EMF measurements at temperatures from 278 K to 368 K . The results extend the temperature region of literature data which ranges from about 293 K to 422 K . New data agree best with the results reported by Oscarson et al. (1989). Differences between both sources are within the experimental uncertainties reported by those authors.

Nomenclature

$\mathrm{a}_{\mathrm{i}}=$ activity of component i
$\mathrm{A}_{\varphi}=$ Debye-Hückel parameter
$\mathrm{b}=$ constant in modified Debye-Hückel expression
$\mathrm{B}_{\mathrm{ij}}=$ second virial coefficient in Pitzer's equation (for interactions between species i and j)
$c^{\circ}=$ reference molarity ($c^{\circ}=1 \mathrm{~mol} / \mathrm{L}$)
$\mathrm{C}_{\mathrm{ijk}}=$ third virial coefficient in Pitzer's equation (for interactions between species i, j, and k)
$C^{\Phi}=$ see eq 32
$C_{P}=$ heat capacity
$\mathrm{e}=$ charge of proton
$E=$ electromotive force
$\mathrm{E}^{\circ}=$ standard potential
$\mathrm{f}=$ modified Debye-Hückel term
F = Faraday constant
$\mathrm{G}=\mathrm{Gi} \mathrm{bbs}$ energy
H = enthalpy
$I_{m}=$ ionic strength (on molality scale)
$\mathrm{k}=$ Boltzmann constant
$\mathrm{K}=$ equilibrium constant for the dissociation reaction of MDEAH ${ }^{+}$
$K_{W}=$ equilibrium constant for the dissociation reaction of water
$m_{i}=$ true molality of component i
$\tilde{m}_{i}=$ overall molality of component i
$\mathrm{m}^{\circ}=$ reference molality ($\mathrm{m}^{\circ}=1 \mathrm{~mol} / \mathrm{kg}$)
$\mathrm{M}_{\mathrm{w}}=$ molar mass of water in $\mathrm{g} / \mathrm{mol}$
$M_{W}^{*}=$ see eq 21
$n_{i}=$ true number of moles of component i
$\tilde{n}_{i}=$ overall number of moles of component i
$\mathrm{N}_{\mathrm{A}}=$ Avogadro constant
$\mathrm{pK}=-\log _{10} K$
$\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{5}=$ coefficients for the temperature dependence of the $\mathrm{H}^{+} / \mathrm{Cl}^{-}$interaction parameters
$R=$ universal gas constant
$S=$ entropy
$\mathrm{t}=$ Celsius temperature
$\mathrm{T}=$ absolute temperature
$z_{i}=$ number of charges of component i
Greek Letters
$\alpha=$ constant in B_{ij} expression
$\beta_{i j}^{(0)}, \beta_{\text {ij }}^{(1)}=$ binary interaction parameters in Pitzer's equation
$\Delta=$ difference
$\Delta_{r}=$ molar reaction change
$\epsilon_{0}=$ vacuum permittivity
$\epsilon_{\mathrm{w}}=$ relative dielectric constant of water
$\gamma_{1, m}^{*}=$ activity coefficient of component i normalized to
infinite dilution (on molality scale)
$\mu_{\mathrm{i}}=$ chemical potential of component i
$v^{+}, v^{-}=$number of cations and anions in electrolyte MX
$\rho_{\mathrm{W}}=$ saturated liquid mass density of pure water

Subscripts

$c=$ on molarity scale
$\exp =$ experimental
$\mathrm{i}, \mathrm{j}, \mathrm{k}=$ component $\mathrm{i}, \mathrm{j}, \mathrm{k}$
$\mathrm{m}=$ on molality scale
$r=$ reaction
I, II = cell I, cell II
Superscripts
$\mathrm{E}=$ excess

* $=$ normalized to infinite dilution
$\infty=$ infinite dilution in pure water
${ }^{\circ}=$ reference state, standard state

Abbreviations

$\mathrm{aq}=\mathrm{in}$ aqueous solution
EMF = electromotive force
liq $=$ liquid
MDEA $=n$-methyldiethanolamine
$M X=$ general electrolyte
$\mathrm{M}=$ cation M
$X=$ anion X
$\mathrm{s}=$ solid
W = water

Appendix 1. Brief Outline of Pitzer's Model

Pitzer's equation (1973) for the excess Gibbs energy of an aqueous, salt-containing system is

$$
\begin{align*}
& \frac{G^{E}}{n_{w} R T M_{w}^{*}}=f\left(I_{m}\right)+\sum_{i \neq W} \sum_{j \neq w} \frac{m_{i}}{m^{\circ}} \frac{m_{j}}{m^{\circ}} B_{i j}\left(I_{m}\right)+ \\
& \sum_{i \neq W j \neq W} \sum_{k \neq w} \frac{m_{i}}{m^{\circ}} \frac{m_{j}}{m^{\circ}} \frac{m_{k}}{m^{\circ}} C_{i j k} \tag{20}
\end{align*}
$$

where M_{w} is defined as

$$
\begin{equation*}
M_{w}^{*}=\frac{M_{w} m^{\circ}}{1000 \frac{\mathrm{~g}}{\mathrm{~kg}}} \tag{21}
\end{equation*}
$$

The function $f\left(I_{m}\right)$ is a modified Debye-Hückel term:

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{I}_{\mathrm{m}}\right)=-\mathrm{A}_{\varphi} \frac{4 \mathrm{I}_{\mathrm{m}}}{\mathrm{~b}} \ln \left(1+\mathrm{b} \sqrt{I_{\mathrm{m}}}\right) \tag{22}
\end{equation*}
$$

where I_{m} is the ionic strength:

$$
\begin{equation*}
I_{m}=\frac{1}{2} \sum_{i} z_{i}^{2}\left(\frac{m_{i}}{m^{\circ}}\right) \tag{23}
\end{equation*}
$$

and $\mathrm{b}=1.2$. A_{φ} is the Debye-Hückel parameter for the osmotic coefficient:

$$
\begin{equation*}
\mathrm{A}_{\varphi}=\frac{1}{3} \sqrt{2 \pi \mathrm{~N}_{\mathrm{A}} \rho_{\mathrm{W}} \mathrm{~m}^{0}}\left(\frac{\mathrm{e}^{2}}{4 \pi \epsilon_{0} \epsilon_{\mathrm{W}} \mathrm{kT}}\right)^{1.5} \tag{24}
\end{equation*}
$$

ϵ_{W} is the relative dielectric constant of water and was taken from Bradley and Pitzer (1979). $\mathrm{B}_{\mathrm{ij}}\left(\mathrm{I}_{\mathrm{m}}\right)$ is the ionic strength dependent second virial coefficient:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{ij}}\left(\mathrm{I}_{\mathrm{m}}\right)=\beta_{\mathrm{ij}}^{(0)}+\frac{2}{\alpha^{2} I_{\mathrm{m}}} \beta_{\mathrm{ij}}^{(1)}\left[1-\left(1+\alpha \sqrt{I_{\mathrm{m}}}\right) \exp \left(-\alpha \sqrt{I_{\mathrm{m}}}\right)\right] \tag{25}
\end{equation*}
$$

where $\beta_{\mathrm{ij}}^{(0)}$ and $\beta_{\mathrm{ij}}^{(1)}$ are binary interaction parameters. For the case considered here, $\alpha=2.0 . \mathrm{C}_{\mathrm{ijk}}$ are ternary interaction parameters.

The chemical potential of each dissolved species is normalized to infinite dilution in pure water on the molality scale:

$$
\begin{equation*}
\mu_{\mathrm{i}}=\mu_{\mathrm{i}, \mathrm{~m}}^{\infty}(\mathrm{T}, \mathrm{p})+\mathrm{RT} \ln \mathrm{a}_{\mathrm{i}} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{a}_{\mathrm{i}}=\frac{\mathrm{m}_{\mathrm{i}}}{\mathrm{~m}^{\mathrm{o}}} \gamma_{i, \mathrm{~m}}^{*} \tag{27}
\end{equation*}
$$

The chemical potential of water is normalized to the pure liquid substance:

$$
\begin{equation*}
\mu_{\mathrm{w}}=\mu_{\mathrm{w}}^{\text {pure }}(\mathrm{T}, \mathrm{p})_{\mathrm{liq}}+\mathrm{RT} \operatorname{In} \mathrm{a}_{\mathrm{w}} \tag{28}
\end{equation*}
$$

The activity coefficient of a dissolved species i is:

$$
\begin{aligned}
& \operatorname{In} \gamma_{i, \mathrm{~m}}^{*}=-\mathrm{A}_{\varphi} \mathrm{z}_{\mathrm{i}}^{2}\left[\frac{\sqrt{I_{\mathrm{m}}}}{1+\mathrm{b} \sqrt{I_{\mathrm{m}}}}+\frac{2}{\mathrm{~b}} \ln \left(1+\mathrm{b} \sqrt{I_{\mathrm{m}}}\right)\right]+ \\
& 2 \sum_{j \neq w} \frac{m_{j}}{m^{\circ}} B_{i j}\left(I_{m}\right)-\frac{z_{i}^{2}}{\alpha^{2} I_{m}^{2}}\left[1-\left(1+\alpha \sqrt{I_{m}}+\frac{\alpha^{2}}{2} I_{m}\right) \times\right.
\end{aligned}
$$

The activity of water follows from the Gibbs-Duhem equation:

$$
\begin{align*}
& \operatorname{In} a_{w}=M_{W}^{*}\left\{2 A_{\varphi} \frac{I_{m}^{1.5}}{1+b \sqrt{I_{m}}}-\sum_{i \neq W} \sum_{\mathrm{j} \neq \mathrm{W}} \frac{m_{i}}{m^{\circ}} \frac{m_{j}}{m^{\circ}}\left[\beta_{i j}^{(0)}+\beta_{i j}^{(1)} \times\right.\right. \\
& \left.\left.\exp \left(-\alpha \sqrt{I_{m}}\right)\right]-2 \sum_{i \neq W} \sum_{j \neq W} \sum_{\mathrm{k} \neq W} \frac{m_{i}}{m^{\circ}} \frac{m_{j}}{m^{\circ}} \frac{m_{k}}{m^{\circ}} C_{i j k}-\sum_{i \neq W^{\prime}} \frac{m_{i}}{m^{\circ}}\right\} \tag{30}
\end{align*}
$$

Appendix 2. Interaction Parameters for Pitzer's Equation

The following section reports relations for the temperature dependence of ion interaction parameters $\mathrm{H}^{+} / \mathrm{Cl}^{-}$ (Pitzer, 1987). T is the temperature in K elvin and $\mathrm{T}_{\mathrm{R}}=$ 298.15 K. p is the pressure in bars and is set to $1 . \rho$ is the mass density of pure water at the particular p and T (in $\mathrm{kg} / \mathrm{m}^{3}$). In the present work, ρ was set equal to the saturated liquid density of pure water (ρ_{w}).

$$
\begin{aligned}
& \mathrm{f}(\mathrm{~T})=\mathrm{Q}_{1}+\mathrm{Q}_{2} \ln (\rho / 997)+\mathrm{Q}_{3}(\rho-997)+ \\
& \mathrm{Q}_{4}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{R}}\right)+\mathrm{Q}_{5}(\mathrm{p}-1) \\
& \beta_{\mathrm{H}^{+}, \mathrm{Cl}-}^{(0)} \quad \beta_{\mathrm{H}^{-}, \mathrm{Cl}-}^{(1)} \quad \mathrm{C}^{\Phi} \\
& \begin{array}{llll}
\mathrm{Q}_{1} & 0.17690 & 0.2973 & 0.724 \times 10^{-3} \\
\mathrm{Q}_{2} & -9.140 \times 10^{-2} & 16.147 & 0 \\
\mathrm{Q}_{3} & 0 & -1.7631 \times 10^{-2} & 0 \\
\mathrm{Q}_{4} & -4.034 \times 10^{-4} & 0 & -6.072 \times 10^{-5} \\
\mathrm{Q}_{5} & 6.20 \times 10^{-6} & 7.20 \times 10^{-5} & 0
\end{array}
\end{aligned}
$$

For systems containing a single general electrolyte $\mathrm{M}_{v^{+}} \mathrm{X}_{v}-$, the binary and ternary parameters invol ving two or more species of the same sign of charge are usually neglected. The ternary parameters $C_{M, x, x}$ and $C_{M, M, x}$ are usually reported as third virial coefficients C^{Φ} for the osmotic coefficient. Instead of rewriting eqs 29 and 30 in terms of C^{Φ}, we preferred to set $C_{M, X, X}$ to zero and calculated the ternary parameters $C_{M, M, X}$ from numbers reported for C^{Φ} :

$$
\begin{equation*}
\mathrm{C}_{\mathrm{H}^{+}, \mathrm{H}^{+}, \mathrm{Cl}-}=\frac{1}{3} \mathrm{C}^{\Phi} \tag{32}
\end{equation*}
$$

Literature Cited

Bradley, D. J.; Pitzer, K. S. Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hückel parameters to 350 ${ }^{\circ} \mathrm{C}$ and 1 kbar. J. Phys. Chem. 1979, 83, 1599-1603.
Eisenman, G. Interpretation of pH and Cation Measurement. In Glass Electrodes for Hydrogen and Other Cations, Principles and Practice; Mattlock, G., Band, D. M., Eds.; Marcel Dekker, Inc.: New York, 1967; Chapter 2.
Fisher, J . R.; Barnes, H. L. The I on-Product Constant of Water to 350°. J . Phys. Chem. 1972, 76, 90-99.
Kim, J.-H.; Dobrogowska, C.; Hepler, L. G. Thermodynamics of ionization of aqueous al kanolamines. Can. J . Chem. 1987, 65, 17261728.

Kuranov, J.; Rumpf, B.; Smirnova, N. A.; Maurer, G. Solubility of Single Gases Carbon Dioxide and Hydrogen Sulfide in Aqueous Solutions of N -Methyldiethanolamine in the Temperature Range $313-413 \mathrm{~K}$ at Pressures up to 5 MPa . Ind. Eng. Chem. Res. 1996, 35, 1959-1966.
Littel, R. J.; Bos, M.; Knoop, G. J. Dissociation Constants of Some Alkanolamines at 293, 303, 318, and 333 K. J. Chem. Eng. Data 1990, 35, 276-277.
Oscarson, J. L.; Wu, G.; Faux, P. W.; Izatt, R. M.; Christensen, J . J . Thermodynamics of protonation of alkanolamines in aqueous solution to $325^{\circ} \mathrm{C}$. Thermochim. Acta 1989, 154, 119-127.
Pitzer, K. S. Thermodynamics of electrolytes. 1. Theoretical basis and general equations. J. Phys. Chem. 1973, 77, 268-277.
Pitzer, K. S. A thermodynamic model for aqueous solutions of liquidlike density. Rev. Mineral. 1987, 17, 97-142.

Pitzer, K. S. Experimental Methods: Potentiometric. In Activity Coefficients in Electrolyte Solutions, 2nd ed.; Butler, J. N., Roy, R. N., Eds.; CRC Press: Boca Raton, Ann Arbor, Boston, London, 1991; Chapter 4 (ISBN 0-8493-5415-3).
Saul, A.; Wagner, W. International equations for the saturation properties of ordinary water substance. J. Phys. Chem. Ref. Data 1987, 16, 893-901.
Schwabe, K.; Graichen, W.; Spiethoff, D. Physicochemical investiga tions on alkanolamines. Z. Phys. Chem. (Munich) 1959, 20, 68-82 (in German).

Serjeant, E. P.; Warner, A. G. Accuracy of the Hydrogen Ion Selective Glass Electrode. Anal. Chem. 1978, 50, 1724-1727.

Received for review April 18, 1996. Accepted August 22, 1996. ${ }^{\otimes}$ J E960141+
${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, October 1, 1996.

[^0]: * Author to whom correspondence should be addressed. Fax: +49-6312053835. E-mail: gmaurer@rhrk.uni-kl.de.

